
Examples of comparison of prediction quality of different neural network
approaches are shown in Fig. 2.

One of the most popular approaches to studying systems with complex
interactions in recent decades has been the Monte Carlo method. At the same
time, this approach is evolving and improving due to modern advances in
computing technologies and new computational approaches, such as machine
learning and neural networks. The application of machine learning to
statistical physics began relatively recently but is rapidly evolving. For example,
in [1,2,3] approaches to calculate the critical temperature from Monte Carlo-
generated spin configurations were shown. In [4] a similar approach is shown
which allows recognizing different phases of spin systems depending on
parameters such as DMI and external magnetic field 𝐻𝑧 using a neural
network. In this research, we will focus on the study of the ability of different
neural network architectures to predict the main thermodynamic
characteristics of the Edwards-Anderson spin glass models.
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The model is a square lattice of interacting Ising spins, characterized by
random distribution of interactions between spins. Hamiltonian of system :

𝐸 = ෍

𝑖,𝑗

𝐽𝑖𝑗𝑆𝑖𝑆𝑗

where 𝑆𝑖 , 𝑆𝑗 – spins of the lattice, <i,j> denotes the summation over pairs

of interacting spins in a system with size N.

In this work we have demonstrated the possibility of using neural networks
to calculate the basic thermodynamic characteristics of the Edwards-Anderson
spin glass models. We also compared the accuracy results of neural network
implementations of different architectures. On average, the custom neural
network architecture showed more accurate results compared to the full-link
architecture.
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For each considered configuration of the spin glass, 60-temperatures were
calculated from 0.1 to 6 in steps of 0.1. Simulations were performed using a
parallel replica-exchange Monte Carlo (MC) method. To train neural
networks, it was necessary to prepare data sets for training, validation and
testing of neural network models.

In total, two datasets each were calculated for two system sizes. The
datasets contained 2𝑁 values of all bonds 𝐽 , one value of temperature 𝑇 ,
and 2 output values of average energy 𝐸 and average magnetization 𝑀 ,
that is a total of 2𝑁 + 3 values. For the 6𝑥6 spin glass, the small dataset
consisted of 834 configurations (with dimension 50040𝑥75, since each spin
glass configuration was calculated at 60 different temperature values) and
the large one consisted of 41405 configurations (2484300𝑥75). For the
10𝑥10 spin glass, the small dataset consisted of 10302 configurations
(618120𝑥203) and the large of 43596 configurations (2615760𝑥203). All
datasets were divided into train, validation and test data in proportion to
0.8:0.15:0.05.

In this paper, we compared the performance of fully-connected neural
networks(FC) with the custom architectures which we proposed. We created
two NN architectures with two levels of spin lattice abstraction CC1 and CC2.

The first architecture CC1 proposes to consider the first hidden layer ℎ1 as
virtual connections, and the second layer ℎ2 as virtual spins. In such a
network, all neurons of layer ℎ1 , except the temperature neuron, are
connected to the corresponding neurons of layer ℎ2 in the same way as
connections in a square lattice are connected to spins. Layer ℎ2 and ℎ3 are
fully-connected.

The second architecture CC2 offers the same approach as in CC1, except
for the connections between layers ℎ2 and ℎ3. In CC2 it was proposed to
consider layer ℎ3 also as virtual spins, and to connect layer ℎ2 with ℎ3
similarly to neighboring spins in a square lattice.

Fig. 2. - Comparison of results of neural networks with different architecture:
(a) Dependence of energy values on temperature for model N= 6𝑥6 (b)

Dependence of magnetization values on temperature for model N= 6𝑥6 (c)
Dependence of energy values on temperature for model N= 10𝑥10 (d) Dependence of
magnetization values on temperature for model N= 10𝑥10.

To control the overfitting of neural networks during training, the loss
function L was calculated on the validation dataset, which did not
participate in the training. The graph of the loss function L as a function of
the number of training epochs is shown in Fig 1.

Fig. 1 - The dependence of the validation loss function L on epoch number for the
fully-connected FC4 network and the proposed CC1 and CC2 architectures trained
on a big dataset for the models 6𝑥6 (a), 10𝑥10 (b) .


