

Sixth Asian School-Conference on Physics and Technology of Nanostructured Materials Vladivostok, Russia, 25 – 29 April, 2022

Epitaxial growth of Mn₅Ge₃ on Si(111)

Ivan.A. Yakovlev*, Ivan.A. Tarasov *-yia@iph.krasn.ru

Kirensky Institute of Physics, Federal Research Center KSC SB RAS, Akademgorodok 50 bld. 38, 660036, Krasnokarsk, Russia

Abstract. The structure of Mn_5Ge_3 films deposited with and without different buffer layers on Si(111)7×7 substrates at a temperature of 390 °C are investigated by reflection high energy electron diffraction. It is shown that the 200 nm single-crystal germanide film is formed using two buffer layers with a slight manganese deficiency in the structure. But when deposition is without buffer layers, the thickness of a single-crystal film does not exceed 15 nm.

Fig.1. Bulk binary-phase diagram Mn/Ge

Table 1. Lattice parameter of Mn/Ge

Phase	Pearson sb,	lattice parameter, nm			
	group	а	b	с	
Mn ₅ Ge ₃	hP16, P6 ₃ /mcm	0,7188 0,7184		0,5037 0,5053	
Mn ₁₁ Ge ₈ (Mn ₃ Ge ₂)	oP76, Pnma	1,322	1,583	0,509	
$Mn_{3,4}Ge(BT)^*$	hP8, P6 ₃ /mmc	0,2668	-	0,43309	
Mn _{3,4} Ge(HT)	tI8, I4/mmm	0,3803	—	0,3618	
Mn ₅ Ge ₂	hP128,	0,7186		1,30	
	P3c1				
C) Mn5Ge3 (001)					
			[00	01]	
[100]					
			[1]	11]	

^[11-2]Ge (111) Fig.2. TEM cross sectional image of a Mn₅Ge₃ thin film showing an atomic flat interface.[1]

hm

Spintronics

The realization of practical spintronic devices requires an efficient electrical injection of spin-polarized electrons from a ferromagnet into the conduction band of a semiconductor, a subsequent spin-polarized detection as well as an effective manipulation of spin in the semiconducting channel. A perfect control of the growth process of the material layers and the interfaces between these layers will be required to manufacture efficient spintronic devices.

Mn₅Ge₃

The Mn₅Ge₃ presents all the prerequisite criteria necessary in spin devices: it is a well known ferromagnet (FM) with a magnetic ordering persisting up to the room temperature ($T_c=297$ K) with a magnetization of 1200 kAm⁻¹, and with an experimental spin polarization of $P=15\pm5\%$. It has been demonstrated that Mn_5Ge_3 thin films could be grown epitaxially on a Ge(111) within a

Experimental

The experiment was carried out with ultrahigh vacuum molecular-beam epitaxy "Angara" set-up [3], equipped with a system of reflection high-energy electron diffraction (RHEED). The base pressure in the growth chamber was 6.5×10^{-8} Pa. The 15mm*20 mm n-Si(111) substrates were used and prepared by special treatment [3] including annealing in vacuum at 1200 K. The component materials were evaporated from Knudsen effusion cells with BN-cricible.

The Mn₅Ge₃ films were prepared by molecular-beam epitaxy technique with simultaneous deposition of Mn and Ge on Si(111) 7×7 at 390 °C at different ratio of materials including stochiometric Mn₅Ge₃. The thickness of the films was in the range of 30-200 nm. The structure formation was monitored in situ by RHEED. In all experiments, the germanium deposition rate was 0.32 nm/ min, and the manganese deposition rate varied from 0.28 to 0.30 nm/min. This rate range includes a flow ratio mode for obtaining a stoichiometric Mn₅Ge₃, which is V(Mn)/V(Ge)=0.926. In this work, a single-layer film of manganese germanide with the Mn₅Ge₃ stoichiometry was obtained, as well as two films with different Mn-Ge buffer layers close to Mn₅Ge₃ stoichiometry.

	Mn₅Ge₃	Mn₅Ge₃	Mn_5Ge_3 $Mn_{[5-0.15]}Ge_3(12 \text{ nm})$
	Si(111) 7×7	Si(111) 7×7	Si(111) 7×7
	single-layer	one buffer	two buffers
Si(111)7x7 [11-2]	4 thefait	1	0.0 μm 0.5 1.0
~9 nm	1.1	0.0	·DIC

lattice mismatch of 3.7%. Mn₅Ge₃ has a hexagonal crystal structure $P6_3$ /mcm, and lattice parameters a = 7.184 Å and c = 5.053 Å. The crystal structure is formed by two Mn sublattices: Mn I with atomic positions at (0.236, 0, 1/4), Mn II with atomic positions at (1/3, 2/3, 0) and Ge at (0.5991, 0, 1/4). [1, 2]

Fig.3. Evolution of RHEED on total thickness Mn₅Ge₃ film with: a) single layer of Mn₅Ge₃; b) two buffer layers of nonstoichiometric Mn₅Ge₃

50 A single-crystal film with an island morphology is formed at the initial 40 deposition stages of a single-layer Mn_5Ge_3 film on Si(111)7×7 at a temper-30 20

107 nm

100

90

80

70

60

ature of 390 °C. The film acquires a smoother surface at 6 nm thickness, while the crystal structure is transformed to polycrystalline at 15 nm the layer thickness (Fig. 3a).

The single-crystal Mn₅Ge₃ film with 26 nm thickness was formed after deposition of 3 nm $Mn_{50.3}Ge_3$ buffer layer on Si(111)7×7 at a temperature of 390 °C. However, a textured polycrystal begins to form with further deposition (Fig. 4a). AFM shows (Fig. 4b) two structure types: flat plates and islands. We suppose that diffraction streaks are related to flat aries but rings to islands.

The film of stoichiometric Mn₅Ge₃ grows with a single-crystal structure up to 200 nm after deposition of two buffer layers in succession with stoichiometry Mn_[5-0,3]Ge₃ and Mn_[5-0,15]Ge₃ and with 5 and 12 nm thicknesses, respectively. Fig. 3b shows the RHEED evolution patterns of the 200 nm thick Mn₅Ge₃ film obtained with two buffer layers.

Fig.4. Mn₅Ge₃ film with one buffer layer: a) evolution of RHEED on total thickness; b) Atomic-force microscopy (AFM)

Acknowledgements

The authors thank Anna V. Lukyanenko (Kirensky Institute of Physics) for AFM measurements

[1] M. Petit, L. Michez, et al. Thin Solid Films 589 (2015) 427–432 [2]A. Alvídrez-Lechuga, J.T. Holguín-Momaca, et al. Superficies y vacio 30, no.4(2017)

[3] I.A. Yakovlev, S.N. Varnakov, B.A. Belyaev et al. JETP letters 99(9), 527 (2014).

Results and discussions