
Magnetic properties  of amorphous  alloys  in a random field model
V.I. Belokon1, O.I. Dyachenko*,1 , R.V. Lapenkov

1 Far Eastern Federal University,10 Ajax Bay, Russky Island, Vladivostok 690922, Russia

*e-mail: dyachenko.oi@dvfu.ru

In this study, an attempt was made to sequentially calculate the Curie

temperature of iron-containing alloys based on the theory of random

fields of exchange interaction. This method makes it possible to

determine the conditions for the occurrence of ferromagnetism in an

amorphous alloy depending on the concentration of exchange-

interacting ions, their Holschmidt radius, and the type of crystal lattice

of the transition metal.

Abstract
The method of random fields of exchange
interaction 

.

Magnetic phas e transition in an amorphous
alloy

From Eq. (6), one can determine the Curie temperature of an amorphous alloy

with an iron concentration of 70% and a magnetic moment of iron ions,

𝑚 = 1.9μB. We considered that the average magnetic moment of bulk

iron changes to 1.9μB when passing from a crystalline compound to its

amorphous counterpart. We find that the Curie temperature in the case

of an amorphous alloy was Tc ≈ 570 К , which is consistent with the

result shown in [11].

Therefore, the result obtained can be considered approximate. Using

the values 𝐻0 and 𝐵 obtained by us, we can estimate the “effective

number of nearest neighbours” 𝑧 of iron ions for an amorphous alloy

using the ratio 𝑧 =
𝐻0

𝐵

2 2

𝑝
. Then, 𝑧 = 13.9, which also agrees with the

result obtained experimentally in [11].ion

The Curie point can significantly depend on the magnetic moment of

iron ions, which in turn, is determined by the concentration and type of

metalloids that make up the alloy. The data known to us indicate that in

alloys with an iron ion concentration of 70%–80%, the magnetic

moment per atom ranges from 1.2 𝜇𝐵 to 1.9 𝜇𝐵 . The effective number

of the nearest neighbours at an iron ion concentration of 70% during

amorphization turns out to be approximately 12.66, which corresponds

to the experimental data.nowledgements
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Conclusion

Despite many publications on the research topic [1-5], there are gaps in

the explanation of some magnetic properties of amorphous metal

alloys, including the behaviour of the Curie point depending on the

concentration and type of metalloids. From general considerations, the

Curie point of an amorphous iron-based alloy should be lower than that

of a crystalline analogue since the number of neighbours in the first

and second coordination spheres, which make the main contribution to

the field of exchange interaction in the bcc lattice, is greater than in

objects with random close packing, for which the average coordination

number is z*≈12 [6]. In this study, an attempt was made to sequentially

calculate the Curie temperature of iron-containing alloys based on the

theory of random fields of exchange interaction [7-8].

Introduction

Following [9], we considered a system of interacting 

particles randomly distributed over the volume. The 

projection of the field 𝐻𝑖  on the 𝑧 axis (the axis of symmetry 

in the Ising model), created at the origin by one arbitrary 

particle located at a point with coordinate 𝑟𝑖  with a 

magnetic moment 𝒎𝑖 , can be determined by means the law: 

𝐻𝑖 = 𝜑 𝑟𝑖 ,𝒎𝑖 .                                                             (1) 

Given the known distribution of particles over 𝑟𝑖  and 

𝒎𝑖 , the distribution density of the interaction field on a 

particle located at the origin of coordinates is a δ-function 

of the form: 

𝛿 𝐻𝑖 −  𝜑 𝑟𝑖 ,𝒎𝑖 𝑖  .                                                     (2) 

Considering the probability of particle distribution over 

volume and magnetic moment, the distribution density of 

the random interaction field 𝐻 can be represented as 

𝑊 𝐻 =
1

 𝜋  𝐵
exp  −

 𝐻−𝐻0 𝛼−𝛽  
2

𝐵2  .                            (3) 

𝐻0 =  𝑛  𝜑 𝒓  d𝑉,   𝐵2 = 2𝑛  𝜑2 𝒓 d𝑉.               (4) 

where value п=N/v is the “effective” number of particles 

per unit volume, 𝛼 and 𝛽 are the relative number of 

particles oriented "up" and "down". 

Similar relationships for crystalline ferromagnets are as 

follows: 

 𝐻0 =  𝑝 𝜑𝑘 , 𝐵2 = 2𝑝(1 −𝑚2𝑝) 𝜑𝑘
2 ,                          (5) 

where 𝑝 is the concentration of exchange-interacting 

ions at the sites of the crystal lattice. Near the Curie point, 

𝐵2 ≈ 2𝑝 𝜑𝑘
2 . 

 Thus, the main characteristics of the distribution 

function 𝐻0 and 𝐵 are interconnected through the 

interaction law 𝜑 𝒓 . As for the exchange interaction of 

two particles, its energy can be determined as follows: 

𝐸𝑖𝑗 = −𝑚𝑖𝑚𝑗 𝐽𝑖𝑗 = −𝑚 ∙ 𝑚𝐽 𝑟𝑖𝑗  = −𝑚 𝜑 𝑟𝑖𝑗  . 

The Curie point is determined by the relation: 
𝐻0

𝐵
tanh  

𝑚𝐵

𝑘𝐵𝑇с
 = 1.                                                     (6) 

Obviously, the relation 
𝐻0

𝐵
 must be greater than 1. And 

the condition 
𝐻0

𝐵
= 1 determines the critical concentration 

𝑝𝑐  of exchange-interacting ions. In the case of a crystalline 

ferromagnet and interaction between particles of only the 

first coordination sphere, 𝜑𝑘 = 𝑓 = const. From here, 

𝛾 =
𝐻0

𝐵
=

𝑝𝑐  𝑧  𝑓

𝑓 2𝑝𝑐  𝑧
= 1,                                                   (7) 

𝑝 =
2

𝑧
 ,                                                                         (8) 

where 𝑧 is the number of nearest neighbours. 

The greatest difficulty for calculating the exchange 

interaction fields in an amorphous alloy is the calculation 

of the exchange integral 𝐽 between neighbouring atoms 

(ions) as a function of the distance between them. Perhaps 

the only exact result was obtained when calculating the 

exchange interaction energy of an ionized hydrogen 

molecule [10]. The exchange energy, up to sign, is 

proportional to the exchange integral and has the form 

𝐸0~
1

𝑟0
 1 −

2

3
𝑟0

2 exp(−𝑟0),                                               (9) 

where 𝑟0 =
𝑎

𝑐
, 𝑐 is the radius of the first Bohr orbit, and 𝑎 is 

the distance between the nuclei.  

We consider the Bette–Slater dependence of the 

exchange integral 𝐽 on the ratio of the distance between ion 

a to the diameter of the unfilled shell 2𝑟, which 

qualitatively correctly reflects the dependence of the 

exchange integral on the distance. Ferromagnetic elements 

Fe, Co, and Ni have the highest value of the exchange 

integral. Based on such a scheme, it is possible to explain 

not only the ferromagnetism of Fe, Co, and Ni but also the 

antiferromagnetism of alloys, and so forth. 

We tried to approximate the Bette–Slater curve based 

on formula (9). Assuming the dependence of the exchange 

integral on the ratio of the distance between ions a to the 

diameter of the unfilled shell 2𝑟 in the form: 

𝐽 𝑥 =
ⅇ−2𝑥 (−1+

4𝑥2

9
)

𝑥
,                                                                (10) 

where 𝑥 =
𝑎

2𝑟
=

𝑎

𝑑
. 

Using the approach described above, consider an 

amorphous alloy containing iron in an amount of 70% of 

the total composition. The volume of the crystal cell in 

accepted units is 𝑉 = 𝑥3 =  
𝑎0

𝑑
 

3

= 7.26. The volume 

occupied by two ions is 𝑁𝑉0 = 2
4

3
𝜋  

𝑟𝑔

𝑟
 

3

= 4.93, where 

𝑟𝑔 = 0.124 ∙ 10−9 𝑚 is the Holschmidt radius and 𝑟 = 74 ∙

10−12  𝑚 is the iron ion radius. The volume fraction 

occupied by ions is defined as 
𝑁𝑉0

𝑉
=

4.93

7.26
= 0.68. Thus, the 

effective density can be found as 𝑛 = 0.7
𝑁𝑉0

𝑉
 1 +

0.7
𝑁𝑉0

2𝑉
 = 0.59. 

Using formula (4), we determine the moments of the 

distribution function by integrating over volume: H0 =
489 𝑇, В = 241 𝑇. 

From Eq. (6), one can determine the Curie temperature 

of an amorphous alloy with an iron concentration of 70% 

and a magnetic moment of iron ions, 𝑚 = 1.9μB . We 

considered that the average magnetic moment of bulk iron 

changes to 1.9μB  when passing from a crystalline 

compound to its amorphous counterpart. We find that the 

Curie temperature in the case of an amorphous alloy was 

Tc ≈ 570 К , which is consistent with the result shown in 

[11]. 

Therefore, the result obtained can be considered 

approximate. Using the values 𝐻0 and 𝐵 obtained by us, we 

can estimate the “effective number of nearest neighbours” 

𝑧 of iron ions for an amorphous alloy using the ratio 𝑧 =

 
𝐻0

𝐵
 

2 2

𝑝
. Then, 𝑧 = 13.9, which also agrees with the result 

obtained experimentally in [11]. 


