Magnetic properties of amorphous alloys in a random field model V.I. Belokon¹, O.I. Dyachenko^{*,1}, R.V. Lapenkov ¹ Far Eastern Federal University, 10 Ajax Bay, Russky Island, Vladivostok 690922, Russia *e-mail: <u>dyachenko.oi@dvfu.ru</u>

Abstract

In this study, an attempt was made to sequentially calculate the Curie temperature of iron-containing alloys based on the theory of random fields of exchange interaction. This method makes it possible to determine the conditions for the occurrence of ferromagnetism in an amorphous alloy depending on the concentration of exchangeinteracting ions, their Holschmidt radius, and the type of crystal lattice of the transition metal.

Introduction

Despite many publications on the research topic [1-5], there are gaps in the explanation of some magnetic properties of amorphous metal alloys, including the behaviour of the Curie point depending on the concentration and type of metalloids. From general considerations, the Curie point of an amorphous iron-based alloy should be lower than that of a crystalline analogue since the number of neighbours in the first and second coordination spheres, which make the main contribution to the field of exchange interaction in the bcc lattice, is greater than in objects with random close packing, for which the average coordination number is $z^* \approx 12$ [6]. In this study, an attempt was made to sequentially calculate the Curie temperature of iron-containing alloys based on the theory of random fields of exchange interaction [7-8].

FIG. 1. The Bethe-Slater dependence [10] of the exchange integral J on the ratio of the distance between ion a to the diameter of the unfilled shell $2r_n$

Following [9], we considered a system	m of interacting
variables randomity distributed over the	e volume. The
projection of the field H_i on the z axis (the z	axis of symmetry
n the Ising model), created at the origin	inoto <i>x</i> with a
particle localed at a point with coold	male T_i with a
$H = \omega(r, m)$	y means the law. (1)
$\Pi_i - \varphi(I_i, \mathbf{m}_i).$	(1)
\mathbf{n}_{i} the distribution density of the inters	ection field on a
m_i , the distribution density of the interaction of coordinate	α is a β -function
of the form.	
$\delta[H_{i} - \sum \omega(r_{i} \mathbf{m}_{i})]$	(2)
Considering the probability of particle	distribution over
volume and magnetic moment, the distrib	oution density of
he random interaction field <i>H</i> can be repr	esented as
$1 \qquad \left(\begin{array}{c} (H-H_0(\alpha-\beta))^2 \end{array} \right)^2$	
$W(H) = \frac{1}{\sqrt{\pi B}} \exp\left(-\frac{(1-H)(B^2 - F^2)}{B^2}\right).$	(3)
$H_0 = n \int \varphi(\mathbf{r}) \mathrm{d}V, \ B^2 = 2n \int \varphi^2(\mathbf{r}) \mathrm{d}V$	(4)
where value $n = N/v$ is the "effective" nur	nber of particles
ber unit volume, α and β are the rela	tive number of
particles oriented "up" and "down".	
Similar relationships for crystalline ferro	omagnets are as
ollows:	
$H_0 = p \sum arphi_k$, $B^2 = 2p(1-m^2p) \sum arphi_k^2$,	(5)
where p is the concentration of exch	ange-interacting
ons at the sites of the crystal lattice. Near	the Curie point,
$B^2 \approx 2p \sum \varphi_k^2$.	
Thus, the main characteristics of	the distribution
unction H_0 and B are interconnected	ed through the
nteraction law $\varphi(\mathbf{r})$. As for the exchange	ge interaction of
wo particles, its energy can be determined	ined as follows:
$\mathcal{E}_{ij} = -m_i m_j J_{ij} = -m \cdot m J(r_{ij}) = -m \varphi$	$p(r_{ij}).$
The Curie point is determined by the re	elation:
$\frac{H_0}{R}$ tanh $\left(\frac{mB}{L}\right) = 1.$	(6)
$B = \langle k_B T_c \rangle$	
Obviously, the relation $\frac{1}{B}$ must be gre	ater than 1. And
he condition $\frac{H_0}{R} = 1$ determines the critic	al concentration
v_c of exchange-interacting ions. In the cas	e of a crystalline
erromagnet and interaction between part	icles of only the
irst coordination sphere, $\varphi_k = f = \text{const}$. From here,
$\gamma = \frac{H_0}{f} = \frac{p_c z f}{f} = 1.$	(7)
$f_{\lambda} = f_{\lambda} 2p_{c} z$	
$p=\frac{z}{z}$,	(8)
7	
0.010	
0.005	
0.000	$\geq x$
	4
-0.005	
-0.010	

shown.

Magnetic phase transition in an amorphous alloy

The greatest difficulty for calculating the exchange teraction fields in an amorphous alloy is the calculation the exchange integral J between neighbouring atoms ons) as a function of the distance between them. Perhaps e only exact result was obtained when calculating the change interaction energy of an ionized hydrogen olecule [10]. The exchange energy, up to sign, is roportional to the exchange integral and has the form

$$E_0 \sim \frac{1}{r_0} \left(1 - \frac{2}{3} r_0^2 \right) \exp(-r_0),$$

here $r_0 = \frac{a}{r}$, c is the radius of the first Bohr orbit, and a is ne distance between the nuclei.

We consider the Bette–Slater dependence of the change integral J on the ratio of the distance between ion to the diameter of the unfilled shell 2r, which alitatively correctly reflects the dependence of the change integral on the distance. Ferromagnetic elements e, Co, and Ni have the highest value of the exchange tegral. Based on such a scheme, it is possible to explain ot only the ferromagnetism of Fe, Co, and Ni but also the tiferromagnetism of alloys, and so forth.

We tried to approximate the Bette–Slater curve based formula (9). Assuming the dependence of the exchange tegral on the ratio of the distance between ions a to the ameter of the unfilled shell 2r in the form:

$$J(x) = \frac{e^{-2x}(-1 + \frac{4x^2}{9})}{\frac{x}{9}},$$
(10)
here $x = \frac{a}{2x} = \frac{x}{d}.$

Using the approach described above, consider an morphous alloy containing iron in an amount of 70% of he total composition. The volume of the crystal cell in accepted units is $V = x^3 = \left(\frac{a_0}{d}\right)^3 = 7.26$. The volume occupied by two ions is $NV_0 = 2\frac{4}{3}\pi \left(\frac{r_g}{r}\right)^3 = 4.93$, where $= 0.124 \cdot 10^{-9} m$ is the Holschmidt radius and $r = 74 \cdot 10^{-9} m$ $10^{-12} m$ is the iron ion radius. The volume fraction occupied by ions is defined as $\frac{NV_0}{V} = \frac{4.93}{7.26} = 0.68$. Thus, the effective density can be found as $n = 0.7 \frac{NV_0}{V} (1 + 1)$ $0.7 \frac{NV_0}{2V} = 0.59.$

Using formula (4), we determine the moments of the distribution function by integrating over volume: $H_0 =$ BB9 T, B = 241 T.

From Eq. (6), one can determine the Curie temperature of an amorphous alloy with an iron concentration of 70% and a magnetic moment of iron ions, $m = 1.9\mu_{\rm B}$. We considered that the average magnetic moment of bulk iron changes to $1.9\mu_B$ when passing from a crystalline compound to its amorphous counterpart. We find that the Curie temperature in the case of an amorphous alloy was $T_c \approx 570$ K, which is consistent with the result shown in [11].

(9)

The Curie point can significantly depend on the magnetic moment of iron ions, which in turn, is determined by the concentration and type of metalloids that make up the alloy. The data known to us indicate that in alloys with an iron ion concentration of 70%–80%, the magnetic moment per atom ranges from 1.2 μ_B to 1.9 μ_B . The effective number of the nearest neighbours at an iron ion concentration of 70% during amorphization turns out to be approximately 12.66, which corresponds to the experimental data.

Conclusion

Therefore, the result obtained can be considered approximate. Using the values H_0 and B obtained by us, we can estimate the "effective" number of nearest neighbours" z of iron ions for an amorphous alloy using the ratio $z = \left(\frac{H_0}{B}\right)^2 \frac{2}{p}$. Then, z = 13.9, which also agrees with the result obtained experimentally in [11].

FIG. 3. The curve of dependence $I_s/I_s o = f(T)$ of spinning tapes based on Fe [11].

1. M.E. McHenry, M.A. Willard, D.E. Laughlin. Prog. Mater. Sci. 44(1999)291.

2. K. Błoch. J. Magn. Magn. Mater. **390** (2015) 118.

3. H.R. Lashgari, D. Chu, S. Xie, H. Sun, M. Ferry, S. Li Non-Cryst. Solids **391** (2014)61.

4. A. Inoue. Mater. Sci. Eng. A **304–306** (2001)1.

5. A. Makino, A. Inoue, T. Mizushima Mater. Trans., JIM **41** (2000)147.

6. G. A. Petrakovskii. Soviet Physics Uspekhi 24(6)(1981)511.

7. V. Belokon, R. Lapenkov, E. Chibiriak, O. Dyachenko. Journal of Magnetism and Magnetic Materials **512**(2020)167051.

8. V. Belokon, A. Trofimov, O. Dyachenko. Oguchi's method and random interaction fields' method: Journal of Magnetism and Magnetic Materials **471**(2019)501.

9. V. Belokon, K. Nefedev. Journal of Experimental and Theoretical Physics **93** (1) (2001)136.

10.A. Sokolov. Moscow: Uchpedgiz (1962)591.

11.N. Ilin, V. V. Tkachev, A. N. Fedorets, A. Tsesarskaya, V. Ivanov, A. Kuchma, A. Frolov, V. Dolzhikov, G. Kraynova, V. Plotnikov. Bulletin of the Russian Academy of Sciences Physics 82(7) (2018) 860-863.