Atomic and Electronic Structure of the YFeO₃ Surface with Oxygen Vacancies

A.A. Gnidenko*, P.G. Chigrin

Khabarovsk Federal Research Center Institute of Materials Science of FEB RAS, 153 Tihookeanskaya St., Khabarovsk 680042, Russia *e-mail: agnidenko@mail.ru

Introduction

The field of application of the complex oxides with a perovskite structure (ABO₃) is very wide: sensors and detectors, solar cells, photocatalysts and solid oxide fuel cells. It was found that the defect formation in the crystal lattice of ABO₃ leads to a significant increase in catalytic activity, so perovskite compounds can be used as alternative multifunctional catalysts for the neutralizing of diesel gases.

The atomic and electronic structure of YFeO₃ at the formation of oxygen vacancies on the surface was studied using modern computer simulation methods.

Methods and calculation parameters

- Quantum Espresso software package (DFT+ pseudopotential)
- **PBE** functional
- 6×4×6 k-point grid for orthorhombic YFeO₃ cell
- Cutoff energy 60 Ry
- Ultrasoft PP for Y, Fe, O from QE database
- Hubbard correction (DFT + U) with the U_{eff} = 4 eV
- Spin-polarization (G-type anti-ferromagnetic order for Fe)

Bulk oxygen vacancy formation

100 (100)		$E_{form} = E_{vac} - E_{ia}$	deal $+\frac{1}{2}EO2$
Configuration	E _{form} , eV	Difference, eV	
$YFeO_{3-\delta}(\delta = 0.25) - O1$	3.69		
$YFeO_{3-\delta}(\delta = 0.25) - O2$	3.79	0.10	
$YFeO_{3-\delta}(\delta = 0.0625) - O1$	3.13		
$YFeO_{3-\delta}(\delta = 0.0625) - O2$	3.42	0.29	

YFeO₃ surfaces: (001), (010) and (100). The formation energies

Area, m ²	Slab characteristics	Surface energy, J/m ²
$4.36 \cdot 10^{-19}$	5 layers	0.92
	7 layers	0.91
	5 layers, the lower	0.97
	layers are fixed	
$4.11 \cdot 10^{-19}$	9 layers (FeO ₂)	1.03
	9 layers (YO)	1.31
	9 layers (FeO ₂), the	1.05
	lower layers are fixed	
3.01 · 10 ⁻¹⁹	5 layers	1.06
	5 layers, the lower	1.11
	layers are fixed	
	Area, m^2 4.36 \cdot 10 ⁻¹⁹ 4.11 \cdot 10 ⁻¹⁹ 3.01 \cdot 10 ⁻¹⁹	Area, m^2 Slab characteristics $4.36 \cdot 10^{-19}$ 5 layers7 layers5 layers, the lower layers are fixed $4.11 \cdot 10^{-19}$ 9 layers (FeO2)9 layers (YO)9 layers (YO)9 layers (FeO2), the lower layers are fixed $3.01 \cdot 10^{-19}$ 5 layers5 layers, the lower layers are fixed

All simplification and number of atomic layers insignificantly influence on the values of surface energy. $E_{unrel.slab} - E_{rel.slab}$

• (010)-(FeO₂) surface is more favorable

Formation of O vacancies on the surface

Surface	Area, m ²	E _{form} , eV		
(001)	$4.36 \cdot 10^{-19}$	2.40		
	$17.45 \cdot 10^{-19}$	1.74		
(100)	$4.11 \cdot 10^{-19}$	1.79		
	$16.44 \cdot 10^{-19}$	0.81		
(010)	$3.01 \cdot 10^{-19}$	3.51		
	$12.03 \cdot 10^{-19}$	3.33		
$E_{\mathit{form}} = E_{\mathit{slab+vac}} - E_{\mathit{slab}} + \frac{1}{2} E_{\mathit{O2}}$				

Atoms of YFeO₃ surface layers: a) without oxygen vacancy; b) one vacancy per unit cell cross-section; c) one vacancy per cell area increased by 4 times

DOS for YFeO3(100) and YFeO3(001)

Formation of an oxygen vacancy leads to the appearance of levels in the band gap, as well as to a partial delocalization of the 3d states of Fe. At the vacancy formation on the YFeO₃(010) surface there are distributed states corresponding to the surface Fe atoms

In the case of the (001) and (100) surfaces there is a partial splitting of the peak corresponding to the bulk states, this occurs due to the formation of the Fe-Fe bond when oxygen is removed from the surface and the surface layers are included in the atomic relaxation process.

Formation of an oxygen complex on the YFeO3(100) surface

Conclusion

- There is a tendency to a decrease in the formation energy with an increase in the surface area, which corresponds to a decrease in the vacancy concentration.
- The smallest value of 0.81 eV was obtained for the (100) surface, which is approximately four times less than the formation energy of a bulk oxygen vacancy.
- An analysis of the electronic structure showed a partial delocalization of the 3d states of Fe atoms at the surface formation process, formation of an oxygen vacancy, due to the appearance of Fe-Fe bond, enhances delocalization effect.
- An oxygen molecule moves to a surface vacancy without barrier. For YFeO₃(100) energy gain of this process is 1.6 eV