



Russian Science Foundation

# Tuning TiO<sub>2</sub>(B) nanobelts through Nidoping using a hydrothermal approach for metal-ion batteries

<u>D.P. Opra</u><sup>\*</sup>, S.V. Gnedenkov, S.L. Sinebryukhov, A.A. Sokolov, A.B. Podgorbunsky, A.M. Ziatdinov

\*Laboratory of Functional and Electrochemically Active Materials Institute of Chemistry of Far Eastern Branch of Russian Academy of Sciences



#### **Titanium dioxide for industry: Applications and perspectives**



#### TiO<sub>2</sub>(B) as anode material for metal-ion batteries





| Phase    | Crystal system,      | Lattice                          | Density,          | Band gap, eV |
|----------|----------------------|----------------------------------|-------------------|--------------|
|          | Space group          | constants                        | g/cm <sup>3</sup> |              |
| Brookite | Orthorombic,         | a = 9,184 Å,                     | 4,12              | 3,14–3,31    |
|          | Pbca                 | b = 5,447 Å,                     |                   |              |
|          |                      | <i>c</i> = 5,145 Å,              |                   |              |
|          |                      | V = 257,38 ų                     |                   |              |
| Rutile   | Tetragonal,          | a = b = 4,594 Å,                 | 4,25              | 3,02–3,04    |
|          | P4 <sub>2</sub> /mnm | <i>c</i> = 2,959 Å,              |                   |              |
|          |                      | V = 62,45 ų                      |                   |              |
| Anatase  | Tetragonal,          | a = b = 3,784 Å,                 | 3,89              | 3,20–3,23    |
|          | I4 <sub>1</sub> /amd | <i>c</i> = 9,515 Å,              |                   |              |
|          |                      | <i>V</i> = 136,24 Å <sup>3</sup> |                   |              |
| Bronze   | Monoclinic,          | a = 12,179 Å,                    | 3,73              | 3,09–3,22    |
|          | C2/m                 | b = 3,741 Å,                     |                   |              |
|          |                      | <i>c</i> = 6,525 Å,              |                   |              |
|          |                      | β = 107,054°,                    |                   |              |
|          |                      | V = 284,22 Å <sup>3</sup>        |                   |              |

M. Zukalova, M. Kalbac, L. Kavan, I. Exnar, M. Graetzel // Chemistry of Materials 17 (2005) 1248-1255

# Synthesis of Ni-doped TiO<sub>2</sub>(B) nanostructures

#### **Precursors:**

- TiO<sub>2</sub>-anatase nanopowder (~100 нм)
- Ni(NO<sub>3</sub>)<sub>2</sub>·6H<sub>2</sub>O as doping reagent
- 14 M NaOH solution





Opra D.P., Gnedenkov S.V., Sinebryukhov S.L., Gerasimenko A.V., Ziatdinov A.M., Sokolov A.A., Podgorbunsky A.B., Ustinov A.Yu., Kuryavyi V.G., Mayorov V.Yu., Tkachenko I.A., Sergienko V.I. Enhancing lithium and sodium storage properties of TiO<sub>2</sub>(B) nanobelts by doping with nickel and zinc // Nanomaterials. 2021. V. 11. Article ID 1703. DOI: 10.3390/nano11071703

# Morphology of Ni-doped TiO<sub>2</sub>(B)



#### **STEM-images**



Dimensions of nanobelts: width  $\approx$  40–160 nm thickness  $\approx$  3–7 nm length  $\approx$  several microns

## Texture and elemental composition of Ni-doped TiO<sub>2</sub>(B)



#### Chemical state of elements in Ni-containing TiO<sub>2</sub>(B)



#### Crystal structure of Ni-containing TiO<sub>2</sub>(B)



Changing unit cell volume in Ni-doped TiO<sub>2</sub>(B)



Rietveld refinement



#### Electronic structure and optical properties of Ni-modified TiO<sub>2</sub>(B)



# Paramagnetic Centers and Ferromagnetic ordering in Ni-doped TiO<sub>2</sub>(B)



# Electroconductivity of mesoporous Ni-doped TiO<sub>2</sub>(B) nanobelts



|          | undoped TiO <sub>2</sub> (B) | 2 at.% Ni              | 5 at.% Ni                    | 8 at.% Ni                    |
|----------|------------------------------|------------------------|------------------------------|------------------------------|
| σ, См/см | 1,05·10 <sup>-10</sup>       | 9,78·10 <sup>-10</sup> | <b>2,24·10</b> <sup>-8</sup> | <b>5,48·10</b> <sup>-9</sup> |

# <u>Li-storage</u> properties of mesoporous Ni-doped TiO<sub>2</sub>(B) nanobelts



## **<u>Na-storage</u>** properties of mesoporous Ni-doped TiO<sub>2</sub>(B) nanobelts



## Summary

Herein, a hydrothermal route was applied to synthesize mesoporous (at least 70% of pores having a diameter of 4,2 nm) belt-like  $TiO_2(B)$  nanostructures (width: 40–160 nm, thickness: 3–7 nm, length: several microns) doped by nickel (Ni/Ti atomic ratios of 0,02, 0,05, and 0,08) with a specific surface area and pore volume reaching 114 m<sup>2</sup>/g and 0,48 cm<sup>3</sup>/g.

Nickel doping increased the unit cell volume of bronze titanium dioxide by 4% (Ni/Ti = 0.05), confirming the incorporation of Ni<sup>2+</sup> ions at the Ti<sup>4+</sup> positions with the formation of a substitutional solid solution. Indeed, the Ni<sup>2+</sup> ion is bigger (0,69 Å) than Ti<sup>4+</sup> (0,605 Å), resulting in lattice distortions after substitution.

Doping TiO<sub>2</sub>(B) with nickel is accompanied by the generation of localized Ni 3*d* defect states within the band gap of TiO<sub>2</sub>(B) and leads to the formation of paramagnetic defects (anionic vacancies trapped electrons). As a result the band gap energy is reduced from 3,28 to 2,70 eV after doping. The conductivity of nickel-containing titanium dioxide reaches  $2.24 \times 10^{-8}$  S/cm (Ni/Ti = 0,05), exceeding that of the undoped sample (1,05 × 10<sup>-10</sup> S/cm).

## Summary

The galvanostatic charge/discharge cycling of materials in lithium cells showed a favorable effect of nickel doping on the electrochemical process. Among the tested samples, Ni-containing TiO<sub>2</sub>(B) nanobelts with an Ni/Ti atomic ratio of 0,05 demonstrated the best battery performance. In particular, after 100 charge/discharge cycles, a reversible capacity of 175 mA·h/g was achieved for nickel-doped TiO<sub>2</sub>(B) at the current density of 50 mA/g, whereas unmodified bronze TiO<sub>2</sub> electrode maintained 140 mA·h/g. Moreover, Ni doping improved the rate performance of TiO<sub>2</sub>(B) nanobelts.

Concerning its operation in sodium cells, it was found that nickel-containing material exhibited improved cycling with a specific capacity of about 95 mA·h/g after 50 cycles at the current load of 35 mA/g. It is better than for unmodified TiO<sub>2</sub>(B) nanobelts: about 50 mA·h/g under the same testing conditions.

The main factors determining the enhanced electrochemical performance of doped  $TiO_2(B)$  were (i) increased electronic conductivity, (ii) improved stability of crystal lattice toward guest ion insertion/extraction, and (ii) facilitated transport of Li<sup>+</sup> and Na<sup>+</sup>. Thus, the current study demonstrates that proper doping might be an effective way to adopt bronze titanium dioxide's properties for its usage in the area of metal-ion batteries.



Thank you for your time and attention!